Valuing Natural Resource Damages

How to Use Empirical Data and Estimation Techniques to Build Positions, Claims, and Leverage

American Bar Association, Section of Environment, Energy, and Resources

David Allen
Stratus Consulting Inc.
Marquette, MI

March 13, 2009
Agenda

- What are natural resource (NR) damages?
- Methods for calculating damages
- Often-disputed technical issues
- Fox River/Green Bay example
What Are NR Damages?
What Are NR Damages?

- Cost or value: enough NR restoration to make public whole for NR losses (resulting from hazardous substance releases): “restore, replace, or acquire the equivalent”
Chronology of NR Injury and Service Losses

- Resource service level
- Incident date
- Start primary restoration
- Time

- Interim losses
- Baseline
- Recovery path with primary restoration
Service Losses

No Action — Natural Recovery

Time

Services
Service Losses (cont.)

- No Action — Natural Recovery
- Response Action
Service Losses (cont.)

No Action — Natural Recovery

NRDA Restoration

Response Action

No Action — Natural Recovery

Time

Services
Physical Injuries vs. Economic Damages

Injuries:
- Impaired land, air, water, biota
- Measured directly (e.g., death from acute poisoning)
- Estimated indirectly (e.g., bio-markers, predicted effects)
- Definition/assumed (e.g., WQS, consumption advisories)

Damages:
- Reduced public use, enjoyment, appreciation
- Measured directly (e.g., observed actions/RP and surveys/SP)
- Estimated indirectly (e.g., benefits transfer)
- Values assumed (e.g., many HEA/REAs)
Economic Damages vs. Legal Claims

Economic damages:
- Damages = value of NR loss or costs to restore
- Damages determined by public’s losses
- *Typically* expressed in $ for convenience
- Developed by economists

Legal claims:
- Damages = a measure of a legal claim
- Damages determined by plaintiff’s action
- *Will* be converted to $ by PRPs, courts
- Developed by attorneys
NR Damages vs. Cleanup Costs

- Residual to cleanup/response
- NR
- NR trustees
- Must succeed legally first
- Actual injuries
- Cleanup-like actions to break pathways; more often based on habitats

- Cleanup/response is primary
- Human health, environment
- EPA, USCG, State EPAs
- Superfund and orders
- Risk
- More authority, more case law, more money, more accepted for cleanup
CERCLA Damage Determination

- Damages (for restoration) include (43 CFR Part 11)
 - **Baseline restoration**: cost (or value) to restore NR & services to baseline
 - **Compensable value**: interim losses until baseline (or restoration)
 - **Assessment costs**: reasonable (i.e., value justifies cost)
OPA Damage Determination

- Restoration (or damages) includes (value of) (15 CFR Part 990)
 - **Primary restoration**: return injured NR & services to baseline
 - **Compensatory restoration**: interim losses until NR baseline
 - **Assessment costs**: reasonable (i.e., value justifies cost)
Methods for Calculating Damages
Calculating Damages: Equivalency Methods

Public losses from NR injuries

Public gains from NR restoration
Restoration Cost vs. Valuation

- Restoration practical, cost-effective & valuable
 - Cost to fix injuries (e.g., clean oil off of bird)
 - Cost to replace (e.g., wetland acre oiled)
 - Cost of equivalent (HEA, REA, VEA)
 - Resource equivalence (e.g., bird-years)
 - Habitat equivalence (e.g., acre-years)
 - Ecological equivalence (service-acre-years)
 - Value equivalence (e.g., dollars, utility)
 - Discounting over time
Restoration Cost vs. Valuation (cont.)

- **Value**: of public losses from releases, or of sufficient restoration to offset losses
 - Revealed preference: human behavior (especially money spent): travel cost/RUM, hedonic pricing, market price
 - Stated preference: surveys (CVM, conjoint analysis)
Analysis for Settlement

- Restoration costs based on HEA
 - Assumptions if data limited
 - Equivalence: injured and restored habitats
 - Relationships
 - Toxicity and %-service-loss
 - Restoration and %-service-gain
 - Different habitats or services (ecological and/or economic equivalence)
Analysis for Settlement (cont.)

- Valuation based on economics studies
 - Benefits transfer if data are limited
 - Average willingness to pay (WTP)
 - Number of people with the average WTP
 - Similarities and differences between sites, circumstances, human populations
Litigation-Quality Measurement

- Level of proof needed relates to total amount trustees claim
 - Small claims (absolute, or relative to PRP’s CNTS value): extrapolate (“back-of-envelope”)
 - Large claims: even highly credible analyses will be strongly and thoroughly scrutinized
 - Also applies to release, pathway, exposure, injury, and restoration analysis
Any damage calculation method can be useful

- First, estimate damages: available information (e.g., HEA, REA, benefits transfer)
- If damages significant, refine, collect data, and apply additional techniques
- If interest on damages exceed litigation costs, do not rely on backs of envelopes!
Litigation-Quality Measurement (cont.)

- Any method can be criticized
- To prevail in expert negotiations or litigation:
 - CVM with sufficient response rates and carefully worded and tested surveys
 - Travel cost study of correct population, with appropriate substitutes
 - HEA includes measures of how injury/loss relates to restoration/gain, and cost to value
Often-Disputed Technical Issues
Often-Disputed Technical Issues

- **Releases**: what happened at facilities before environmental measurements of contamination?
- **Pathways**: how likely are injuries in or from deep sediments or groundwater?
- **Exposure**: how important are regulatory injuries like WQS violation?
- **Injury**: how important are biological injuries that don’t measurably impact populations?
Often-Disputed Technical Issues (cont.)

- **Damages**: how much difference between total values and current, active use values?
- **Restoration**: how much discretion do trustees enjoy in choosing restoration that may cost more than its public value?
Fox River/Green Bay Example
Fox River/Green Bay Site (cont.)
Fox River/Green Bay Site (cont.)
Fox River/Green Bay Site (cont.)

<table>
<thead>
<tr>
<th>Cost > Value</th>
<th>Cost ≈ Value</th>
<th>Cost < Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment removal (trustees)</td>
<td>Habitat restoration (trustees)</td>
<td>Recreational facilities (PRPs)</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td>$111 billion</td>
<td>$111-268 million</td>
<td>$7 million</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>$610 million</td>
<td>$254-610 million</td>
<td>$55 million</td>
</tr>
</tbody>
</table>
In theory

- Trustees could seek $111 billion to restore sediments of Green Bay (but less authority than cleanup, and cost = 180x value)
- Popular park could be cheap and valuable (but merry-go-rounds are not NR)

Therefore: cost-effective, relevant NR restoration, fairly and accurately valued